Arquímedes nació en Siracusa(actual Italia) en el 287 a.C. y murió en el 212 a.C. Fue un gran matemático griego. Hijo de un astrónomo que le introdujo en las matemáticas. Arquímedes estudió en Alejandría, su maestro fue Conón de Samos y conoció a Eratóstene. A este dedicó Arquímedes su Método, en el que expuso su genial aplicación de la mecánica a la geometría, en la que pesaba imaginariamente áreas y volúmenes desconocidos para determinar su valor. Regresó luego a Siracusa, donde se dedicó de lleno al trabajo científico.
Plutarco atribuyó a Arquimedes una inteligencia sobre humana. Se conocen pocas anécdotas de este gran matemático la más divulgada la relata Vitruvio y se refiere al método que utilizó para comprobar si existió fraude en la confección de una corona de oro encargada por Hierón II, tirano de Siracusa y protector de Arquímedes, quizás incluso pariente suyo. Hallándose en un establecimiento de baños, advirtió que el agua desbordaba de la bañera a medida que se iba introduciendo en ella, esta observación le inspiró la idea que le permitió resolver la cuestión que le planteó el tirano. Se cuenta que, impulsado por la alegría, corrió desnudo por las calles de Siracusa hacia su casa gritando ¡Eureka! ¡Eureka!, es decir, ¡Lo encontré! ¡Lo encontré!.
La idea de Arquímedes está reflejada en una de las proposiciones iniciales de su obra Sobre los cuerpos flotantes, pionera de la hidrostática, corresponde al famoso principio que lleva su nombre y, como allí se explica.
Según otra anécdota famosa, recogida por Plutarco, entre otros, Arquímedes aseguró al tirano que, si le daban un punto de apoyo, conseguiría mover la Tierra, se cree que, exhortado por el rey a que pusiera en práctica su aseveración, logró sin esfuerzo aparente, mediante un complicado sistema de poleas, poner en movimiento un navío de tres mástiles con su carga.
Son célebres los ingenios bélicos, según se dice, permitieron a Siracusa resistir tres años el asedio romano, antes de caer en manos de las tropas de Marcelo. También se cuenta que, contraviniendo órdenes expresas del general romano, un soldado mató a Arquímedes por resistirse éste a abandonar la resolución de un problema matemático en el que estaba inmerso, escena perpetuada en un mosaico hallado en Herculano.
Esta pasión de Arquímedes, que le causó la muerte, fue también la que, en vida, se dice que hizo que hasta se olvidara de comer y que soliera entretenerse trazando dibujos geométricos en las cenizas del hogar. Esta imagen contrasta con la del inventor de máquinas de guerra aunque Arquimedes aseguraba que era por sumo placer intelectual.
El esfuerzo de Arquímedes por convertir la estática en un cuerpo doctrinal riguroso es comparable al realizado por Euclides con el mismo propósito respecto a la geometría, esfuerzo que se refleja de modo especial en dos de sus libros: en los Equilibrios planos fundamentó la ley de la palanca, y determinó el centro de gravedad de paralelogramos, triángulos, trapecios, y el de un segmento de parábola. En la obra Sobre la esfera y el cilindro utilizó el método denominado de exhaustión, precedente del cálculo integral, para determinar la superficie de una esfera y para establecer la relación entre una esfera y el cilindro circunscrito en ella. Este último resultado pasó por ser su teorema favorito, que por expreso deseo suyo se grabó sobre su tumba, hecho gracias al cual Cicerón pudo recuperar la figura de Arquímedes cuando ésta había sido ya olvidada.
Descubrimientos.
Aqui dejamos algunos de sus descubrimientos más imortantes:
1-Sobre el equilibrio de los planos
Decubrimirnto más importante.
Descubrimientos.
Aqui dejamos algunos de sus descubrimientos más imortantes:
1-Sobre el equilibrio de los planos
Donde estudia los centros de gravedad de figuras planas y condiciones de equilibrio de la palanca.
2-Sobre la cuadratura de la parábola
Demuestra que: "Una sección de parábola excede en un tercio al área del triángulo de igual base que la sección y cuyo vértice es el de la parábola". Dicho de otra forma, la superficie de la sección de parábola es igual a cuatro tercios de la superficie del triángulo inscrito. A partir de este resultado la cuadratura es obvia.
3-El Método (Sobre el método relativo a los teoremas mecánicos)
Donde da a conocer las bases en las que se apoyan sus descubrimientos, como son la teoría de las razones y de las proporciones entre magnitudes geométricas y sobre todo el método de exhaución de Eudoxo.
Donde da a conocer las bases en las que se apoyan sus descubrimientos, como son la teoría de las razones y de las proporciones entre magnitudes geométricas y sobre todo el método de exhaución de Eudoxo.
4-Sobre la esfera y el cilindro
El resultado principal es que dados un cilindro y una esfera inscrita en él, el volumen de la esfera es dos tercios del volumen del cilindro. Consigue por lo tanto una forma de obtener el volumen de la esfera a partir del volumen del cilindro.
El resultado principal es que dados un cilindro y una esfera inscrita en él, el volumen de la esfera es dos tercios del volumen del cilindro. Consigue por lo tanto una forma de obtener el volumen de la esfera a partir del volumen del cilindro.
5-Sobre espirales
Un estudio bastante complicado y original donde obtiene diversos resultados sobre las espirales. Se cree que el objetivo que se perseguía era resolver alguno de los grandes problemas de la época, como la cuadratura del circulo o la trisección de un ángulo.
Un estudio bastante complicado y original donde obtiene diversos resultados sobre las espirales. Se cree que el objetivo que se perseguía era resolver alguno de los grandes problemas de la época, como la cuadratura del circulo o la trisección de un ángulo.
6-Sobre los conoides y esferoides
Estudio sobre las figuras geométricas que se obtienen al hacer girar las cónicas.
Estudio sobre las figuras geométricas que se obtienen al hacer girar las cónicas.
7-Sobre los cuerpos flotantes
Estudio sobre hidrostática. Se cree que descubrió el principio de la hidrostática cuando estaba bañándose y pensando en el problema que le había propuesto el rey Hierón de Siracusa. Éste había encargado una corona de oro a un artesano y sospechaba que habían sustituido parte del oro por plata. Sumergiendo la corona en agua pudo determinar su volumen (el del agua desalojada) y conocido también su peso pudo demostrar que el artesano intentaba engañar al rey. Cuando a Arquímedes se le ocurrió la idea salió rápidamente de la bañera exclamando: ¡Eureka! ¡Eureka! (que en griego significa "Lo encontré")
Estudio sobre hidrostática. Se cree que descubrió el principio de la hidrostática cuando estaba bañándose y pensando en el problema que le había propuesto el rey Hierón de Siracusa. Éste había encargado una corona de oro a un artesano y sospechaba que habían sustituido parte del oro por plata. Sumergiendo la corona en agua pudo determinar su volumen (el del agua desalojada) y conocido también su peso pudo demostrar que el artesano intentaba engañar al rey. Cuando a Arquímedes se le ocurrió la idea salió rápidamente de la bañera exclamando: ¡Eureka! ¡Eureka! (que en griego significa "Lo encontré")
8-Sobre la medida del circulo
Donde encuentra la fórmula para el área de un circulo y en un prodigio de cálculo e ingenio para aquellos tiempos, consigue hacer una buena aproximación del número pi inscribiendo y circunscribiendo polígonos de hasta 96 lados en una circunferencia. La acotación que encontró fue3+10/71 < pi < 3+1/7,
aproximadamente 3'140845... < pi < 3'142857...
9-El Arenario
En el que distingue claramente lo infinito de lo muy grande (contando los granos de arena que pueden caber en el Universo) y desarrolla un sistema de numeración con el que se pueden representar tales magnitudes. No olvidemos que el sistema de numeración indo-arábigo no era conocido todavía en la cultura occidental.
En el que distingue claramente lo infinito de lo muy grande (contando los granos de arena que pueden caber en el Universo) y desarrolla un sistema de numeración con el que se pueden representar tales magnitudes. No olvidemos que el sistema de numeración indo-arábigo no era conocido todavía en la cultura occidental.
Decubrimirnto más importante.
El principio de Arquímedes es un principio físico que afirma que un cuerpo total o parcialmente sumergido en un fluido en reposo, será empujado con una fuerza vertical ascendente igual al peso del fluido desplazado por dicho cuerpo. Esta fuerza recibe el nombre de empuje hidrostático o deArquímedes, y se mide en newtons . El principio de Arquímedes se formula así:
E=mg=pfgV
Donde ρf es la densidad del fluido, V el volumen del cuerpo sumergido y g la aceleración de la gravedad, de este modo, el empuje depende de la densidad del fluido, del volumen del cuerpo y de la gravedad existente en ese lugar. El empuje actúa siempre verticalmente hacia arriba y está aplicado en el centro de gravedad del fluido desalojado por el cuerpo; este punto recibe el nombre de centro de carena.
E=mg=pfgV
Donde ρf es la densidad del fluido, V el volumen del cuerpo sumergido y g la aceleración de la gravedad, de este modo, el empuje depende de la densidad del fluido, del volumen del cuerpo y de la gravedad existente en ese lugar. El empuje actúa siempre verticalmente hacia arriba y está aplicado en el centro de gravedad del fluido desalojado por el cuerpo; este punto recibe el nombre de centro de carena.
Su historia
La anécdota más conocida sobre Arquímedes, aunque ya hemos mecionado algo anteriormente volvemos ha hacer incapie en ello, cuenta cómo inventó un método para determinar el volumen de un objeto con una forma irregular. De acuerdo a Vitruvio, arquitecto de la antigua Roma, una nueva corona con forma de corona triunfal había sido fabricada para Hierón II, tirano gobernador de Siracusa, el cual le pidió a Arquímedes determinar si la corona estaba hecha de oro sólido o si un orfebre deshonesto le había agregado plata. Arquímedes tenía que resolver el problema sin dañar la corona, así que no podía fundirla y convertirla en un cuerpo regular para calcular su densidad.
La anécdota más conocida sobre Arquímedes, aunque ya hemos mecionado algo anteriormente volvemos ha hacer incapie en ello, cuenta cómo inventó un método para determinar el volumen de un objeto con una forma irregular. De acuerdo a Vitruvio, arquitecto de la antigua Roma, una nueva corona con forma de corona triunfal había sido fabricada para Hierón II, tirano gobernador de Siracusa, el cual le pidió a Arquímedes determinar si la corona estaba hecha de oro sólido o si un orfebre deshonesto le había agregado plata. Arquímedes tenía que resolver el problema sin dañar la corona, así que no podía fundirla y convertirla en un cuerpo regular para calcular su densidad.
Mientras tomaba un baño, notó que el nivel de agua subía en la tina cuando entraba, y así se dio cuenta de que ese efecto podría usarse para determinar el volumen de la corona. Debido a que la compresión del agua sería despreciable, la corona, al ser sumergida, desplazaría una cantidad de agua igual a su propio volumen. Al dividir la masa de la corona por el volumen de agua desplazada, se podría obtener la densidad de la corona. La densidad de la corona sería menor si otros metales más baratos y menos densos le hubieran sido añadidos. Entonces, Arquímedes salió corriendo desnudo por las calles, tan emocionado estaba por su descubrimiento para recordar vestirse, gritando "¡Eureca!".
La historia de la corona dorada no aparece en los trabajos conocidos de Arquímedes, pero en su tratado Sobre los cuerpos flotantes él da el principio de hidrostática conocido como el principio de Arquímedes. Este plantea que todo cuerpo sumergido en un fluido experimenta un empuje vertical y hacia arriba igual al peso del volumen de fluido desalojado es decir dos cuerpos que se sumergen en una superficie , y el más denso o el que tenga compuestos más pesados se sumerge más rápido, es decir, tarda menos tiempo, aunque es igual la distancia por la cantidad de volumen que tenga cada cuerpo sumergido.